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Abstract

Recent advances in pedestrian detection, a fundamental

problem in computer vision, have been attained by trans-

ferring the learned features of convolutional neural net-

works (CNN) to pedestrians. However, existing methods

often show a significant drop in performance when heavy

occlusion and deformation happen because most methods

rely on holistic modeling. Unlike most previous deep models

that directly learn a holistic detector, we introduce the se-

mantic part information for learning the pedestrian detec-

tor. Rather than defining semantic parts manually, we detect

key points of each pedestrian proposal and then extract six

semantic parts according to the predicted key points, e.g.,

head, upper-body, left/right arms and legs. Then, we crop

and resize the semantic parts and pad them with the original

proposal images. The padded images containing semantic

part information are passed through CNN for further clas-

sification. Extensive experiments demonstrate the effective-

ness of adding semantic part information, which achieves

superior performance on the Caltech benchmark dataset.

1. Introduction

Pedestrian detection is a very active research field and

has attracted distinct attention in the computer vision com-

munity, since it is an essential step towards many real-world

applications, including intelligent surveillance, autonomous

driving and pedestrian retrieval [21, 37, 23], etc. Pedestrian

detection has been extensively studied over the past few

decades, and huge progress has been made with the emer-

gence of deep convolutional neural networks [20, 34, 17].

In light of the dramatic success of Faster RCNN [33] in

generic object detection, most proposed pedestrian detec-

tion methods follow this framework. There are two stages

in the pipeline of Faster RCNN: firstly, a region proposal

network (RPN) is proposed to find candidate pedestrian lo-

cations; secondly, a deep region classifier neural network

(RCNN) is deployed to classify these proposals. Notably,

RPN shares the same conv features with the classification
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Figure 1. An example of our constructed semantic part pro-

posal. We first detect N key points of each proposal from a key-

point detection model. Then we extract six semantic parts accord-

ing to the predicted key points, e.g., head, upper-body, left/right

arms and legs. After that, we crop and resize the semantic parts

and pad them with the original proposal images. Self-occluded

key-points (e.g.right arm) are not shown in the image.

network, thus enabling nearly cost-free region proposals.

These two stages are learned end-to-end. The detection

methods based on Faster RCNN [33] have recently regis-

tered further improvement in both detection performance

and computational efficiency.

With the great success of the Faster RCNN based pedes-

trian detection methods [39, 4, 45, 43], a large group of

pedestrian detectors reach convincing performance, and

many of them fall under the umbrella of small scale pedes-

trian detection [25, 35]. It has been shown in recent years

that these techniques such as using hyper-resolution or at-

tention model can reach high recall on real word images.

However, we want to draw attention to the other two fa-

tal issues: deformation and occlusion. Here we define the

deformation as the changes of a pedestrian’s appearance or

gesture, and the occlusion is defined by the hidden part of

the human body occluded by other parts or objects. In real-

world applications, e.g. autonomous driving, more focus

should be directed on the occluded and deformed pedestrian

detection problem. We must give a high recall on a person

standing in front of a car or walking from a hidden corner.
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Unfortunately, the deep CNN classifier in most meth-

ods [4, 45, 3] utilizes holistic representations to describe

the candidate proposals, which cause their incapability to

handle these two common issues in the real-world pedes-

trian detection. Other part-based models define human parts

manually and classify each part to help the final detection.

For example, DeepParts [39] constructs an extensive part

pool and automatically selects the most discriminative parts

to represent proposals. PCN [43] divides candidate regions

into small regular grids. Those methods employ less seman-

tic parts that degrade the performance to some extent.

To address the occlusion and deformation problem in

pedestrian detection, we introduce the semantic part infor-

mation in RCNN to help classify proposals. Since it is ex-

pensive and time-consuming to exhaustively label all hu-

man semantic parts (e.g. face, arm, leg, et al.) in pedestrian

datasets, it is not reasonable to depend on part-level anno-

tations to build reliable body part detection models. To un-

ravel this problem, we use a pseudo label method generally

used in the weakly supervised learning domain. We trans-

fer the pedestrian gesture knowledge from a well-trained

human pose estimation model to generate the pseudo body

part prediction. Then we use the semantic part information

to improve our pedestrian detector.

Figure 1 shows how we construct semantic parts in a

pedestrian proposal. We first apply an off-the-shelf key

point detector to find all the possible human key-points in a

given image. We extract six semantic parts for each pedes-

trian proposal according to the predicted key points, e.g.,

head, upper-body, left/right arms and legs. After that, the

semantic parts are padded to the original proposal image.

The padded image contains the semantic part information,

thus, making the final detector robust to occlusion and de-

formation. Our model does not use explicitly given human

part annotations or key-point annotations that usually need

to be done manually with high cost of labour and time. In

our experiments, we demonstrate that adding the semantic

part information transferred from other datasets(in our case,

COCO) is of great use to achieve superior performance, es-

pecially on near and heavy occluded pedestrians.

Contributions.

(1) Semantic part information based on key points on a

pedestrian is introduced to deal with deformation and occlu-

sion in pedestrian detection, which carries much importance

in real-world image applications .

(2) To incorporate the semantic part information, we

crop and resize the semantic parts and pad them with the

original images into large ones, which contain both holis-

tic and partial information, lending more credence to the

robustness of our model.

(3) The proposed pedestrian detector outperforms the

state-of-the-art methods on the popular benchmark (Caltech

dataset [10]) in the default setting.

2. Related Work

2.1. Object Detection

In recent years, computer vision community, without

doubt, are making inroad to the fields of image classifica-

tion and scene recognition through the agency of the out-

standing performance of CNNs [20, 34, 47]. Generic ob-

ject detectors based on CNNs, e.g., the Region-based CNN

(RCNN) [13], Faster RCNN [33] and other variants have

been introduced [13, 14, 33, 2, 1]. In [45], Liliang et al. find

that R-CNN performs well on the pedestrian detection task,

but Fast R-CNN presents a much worse result because the

resolution in the last convolution layers is too low for small

pedestrians. Researches on simultaneous detection and seg-

mentation [12, 11] also show that object detection can be

improved by using segmentation as a strong cue. Garrick

et al. [3] propose a novel framework using weak box-based

segmentation masks to address the issue of lacking pixel-

wise segmentation annotations, instead of using a separate

segmentation network.

We take SDS-RCNN [3] as the basic pedestrian detector

for the convenience, which follows the Region-based CNN

architecture. We first train an RPN to propose pedestrian

candidates. Then we crop the original images and train an

RCNN model as a binary classifier. Worth mentioning, our

model can be further improved if we substitute the baseline

by any off-the-shelf pedestrian detector, especially most re-

cent ones, e.g., TLL-TFA [35].

2.2. Pedestrian Detection

Many works have been done to improve the pedestrian

detectors by finding small scale pedestrians [4, 35]. In [4],

multi-scale RPN is used to deal with scale variation and

contextual information is introduced in the RCNN classifier.

In [35], Song, et al. propose a novel method that integrates

somatic topological line localization with temporal feature

aggregation for detecting multi-scale pedestrians. However,

those methods highly rely on the holistic representations to

model the proposals, leading to an inferior performance on

heavily-occluded or deformable pedestrians. Compared to

these approaches, our detector harnesses the semantic part

information extracted from original images to represent pro-

posals, which is more robust to occlusion and deformation.

Pioneering work to focus on body parts to improve the

pedestrian detector has shed light on the underlying poten-

tial of this method [39, 43]. Tian et al. [39] propose 45

complementary part detectors and manually construct a part

pool. This pool covers all the scales of different body parts

and the important parts are automatically chosen for occlu-

sion handling. In [43], Wang et al. take manual grids as

parts, and use LSTM for part communication in view of

its capability of learning long-term dependencies. [25] en-

codes fine-grained attention masks into convolutional fea-
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Figure 2. The basic architecture of our Semantic Part Region based Convolutional Neural Networks (SP-RCNN). The RPN+BF [45]

method for pedestrian detection is shown by blue rounded rectangles. Given an input image, a region proposal network is used to find top

K possible pedestrian candidates. Then We adapt two blocks from Region based CNN model to better classify the candidates. In Part

Estimation block (shown as the orange dashed and rounded rectangle), we collect predictions from the key-point detector and the part

proposal detector from input images to draw part bounding boxes. In Part Feature Extraction block (shown as the purple dashed and

rounded rectangle), we use RoI Pooling on feature map from original entity proposal and part proposals (the blue rectangle and yellow

rectangles on the surface of RoI Pooling cube), and concatenate the feature vectors. We also explore other methods to extract feature in

Sec.3.3 and Sec.4.2. Finally, we add full connect layers to classify if a candidate pedestrian is a real person and to regress its boundary.

ture maps to focus on pedestrians. Compared to these meth-

ods, we locate the key points of pedestrian proposal and ex-

tract semantic parts. Finally, we pad parts with the original

proposal regions, which represent each proposal with holis-

tic and partial information, thus enabling the final detector

to reach superior performance.

2.3. Human Pose Estimation

The goal of human pose estimation is to localize hu-

man anatomical key points (e.g., elbow, wrist, etc.) or

parts (e.g., head, arm, leg et al.). Most traditional solu-

tions adopt the probabilistic graphical model or the pic-

torial structure model [32, 44]. In contrast, deep learn-

ing based methods are currently the dominant solutions

[15, 24, 38, 28, 31, 22, 27]. More specifically, there are two

mainstream methods: regressing the position of key points

[41, 5], and estimating heatmaps for body parts [7, 36].

Our proposed method does not train a pose estimator be-

cause of the lack of key point annotations on most general

pedestrian datasets. However, our experiment shows that a

well-trained model on other datasets can be generalized to

this problem. Without bells and whistles, we use Mask-

RCNN[17] trained on COCO[26] to transfer human part

knowledge to our model.

3. Proposed method

In this section, firstly we will introduce the conceptual

overview of our proposed semantic part based region convo-

lutional neural networks (SP-RCNN) for pedestrian detec-

tion. Secondly, we will give a detailed description of each

component of our proposed SP-RCNN system. Finally, the

details about how to implement the proposed detector in

practice will be provided.

3.1. Overview of SP-RCNN

As illustrated in Figure 2, the whole system consists of

three components.

(i) The first component is the region proposal network,

which is used to find the candidate pedestrian and can be

of any typical pedestrian detector like PCN [43] or re-

cent TLL-TFA [35]. In our experiments, a general RPN

is adopted to find proposals from input images.

(ii) The second component is the key point detector,

which locates the specific points on each proposal and then

semantic parts are extracted from the proposal image. We

crop semantic part images, resize and pad them with the

original proposal image to form a large image.

(iii) The formed large image is passed through the final

RCNN classifier for classification and regression. This im-

age contains the semantic partial information, rendering the

detector more robustness to deformation and occlusion.

3.2. Part Estimation Model

Applying part estimation can build a more robust de-

tector for deformable objects (e.g.animals, human, robots).

Even though such objects have variable appearances in dif-

ferent scenes, we can still find the minimal fixed-shape parts
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Table 1. Mapping from key-point IDs to part IDs. To obtain

each part, we find the positions of predicted key-points corre-

sponding to the parts assigned by this table. Then we define part

bounding boxes from Eq. 1

.

Part ID Name Key-Point ID

0 Head 0,1,2,3,4

1 R-Arm 6,8,10

2 L-Arm 5,7,9

3 R-Leg 12,14,16

4 L-Leg 11,13,15

5 Body 5,6,11,12

from the entity. For example, if all parts of an object are

predicted as negative or absent, the object is negative. In

the occluded case, a general object detection model would

project the partly hidden object onto an abnormal feature

map, resulting in confusion for the following classifier. If

we have accurate part estimation, we can still give a power-

ful prediction from visible body parts.

Ideally, a part detection network can be built to locate

the object part bounding boxes from each candidate pro-

posal. However, training such a model requires a consider-

able number of part annotations, which are expensive and

time-consuming. Alternatively, we can apply human pose

estimator to reveal body parts from pedestrian images.

3.2.1 Key-Point Detection

Key-point detection is one of the direct ways to estimate

human pose. COCO[26] dataset defines K = 17 points

to describe people’s gesture and MASK-RCNN[17] takes

the fifth position on COCO’s leaderboard in the challenge.

We use this CNN model to provide human pose priors from

every pedestrian candidate during all of the training, valida-

tion and test processes.

The left image in Fig. 1 is from the prediction of Mask-

RCNN. These points are lined in different colours to indi-

cate their connection and absence. In this model, each k-

th point the highest score pixel location in k-th predicted

hot map (e.g.left eye, right foot). Mask-RCNN does not

use specific domain knowledge related to pedestrian, while

still achieves good precision and efficiency. In fact, since

most pose estimation models are trained on a large scale of

dataset (e.g.COCO with 200k images and 250k person) and

obtain high accuracy in most occasions, any state-of-the-art

key-point detector can be used such as [6] and [30].

3.2.2 Semantic Parts

Based on the possible deformability of people, we slice a

pedestrian into six parts: head, left and right arms, left and

right legs, and main body. Head is a particular discrimina-

tive class, although it is always connected with body rigidly.

Tab. 1 shows the projection from key-points to human

parts. Given a bounding box around a person as a pro-

posal, Mask-RCNN returns visible key-points (left image

in Fig. 1). We assign each part to a subset of these points,

shown in Tab. 1. To get an accurate part bounding box, we

draw a minimal square box covering all of its corresponding

points, and constrain the centre of the box to be equal the

centroid of key points inside one subset. Proposal padding

to increase the size of the square boxes is applied to guaran-

tee semantic parts inside part proposals. Eq.1 gives the for-

mula to compute bounding box parameters, where xk is the

coordination of k-th key-point, r is the padding constant.

c=
1

N

NX

k=1

xk, a=min
k

|c− xk|2 + r. (1)

At the end, we obtain the part proposal boxes

(x1, y1, x2, y2) = (c1 − a, c2 − a, c1 + a, c2 + a),
as shown in the right picture in Fig. 1.

If the proposal does not include the whole pedestrian, or

some part of the human is invisible, we will draw a small

square around the proposal edge or the only visible key-

point. These failure predictions will damage the final clas-

sification, but the remained part proposals are still informa-

tive enough to build a robust model.

Furthermore, when the pedestrian candidate proposal is

much larger than the size of a real human body, it gives lit-

tle detriment on part prediction. Since the inaccurate human

candidate can cause a high location error, we also consider

the original entity proposal to provide a reference on local-

ization regression.

3.3. Parts Feature Extraction

In Fig. 2, the Parts Feature Extraction block is a straight-

forward way to build semantic parts based on RCNN. We

adapt the RoI pooling layer from Fast RCNN to a part RoI

pooling layer. Given a feature map and M proposals, the

feature map is cropped to M tensors according to the pro-

posal positions, and reshaped into M feature vectors. In our

case, M = 7, because we use features from both the six se-

mantic parts and the original candidate pedestrian (entity).

Then the M short vectors are concatenated to a lengthy one.

Finally, as most CNN object detectors, we use two fully

connected layers to get the prediction confidence score and

regressed pedestrian location.

We also compare above methods with our solution that

obtains the part regions by cropping on the raw RGB data

layer. Fig. 4 shows padding semantic parts around the entity

for a 448 × 448 × 3 input image for Res50 backbone. We

resize the entity data as a tall rectangular to try to keep the

aspect ratio. This image is downsampled to 224 × 224 × 3
for VGG16 backbone.

There are two advantages of our proposed solution.

Firstly, part proposal size becomes larger when we get pro-
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Figure 3. Visualization of a women image in both original size

(left) and in 7 × 7 grid (right). Due to the rounding process, if

the part region proposal (e.g. head) is not accurate, the cropped

part feature will change a lot.

posals from raw RGB images. For example, Fig. 3 visual-

izes a women image patch in both original size and feature

map size (7× 7). Due to roundness, if the head region pro-

posal varies from one element to two, the pooled part fea-

ture will change a lot. Secondly, cropping the part region

on the raw RGB data layer is more memory-efficient. Con-

catenating seven part feature vectors can increase the size

of the weights in the fully connected layer by seven times.

In our implementation, our choice saves the GPU memory

from over 8GB GPU to 3.79GB. Further discussion is in

Sec. 4.2 .

3.4. Implementation Details

We use ResNet-50[18] (Res50) as the backbone network

for our SP-RCNN detector. The weights of the filters of

newly-added layers are initialized by randomly drawing

from a zero-mean Gaussian distribution with standard de-

viation 0.01. Biases are initialized at 0. All other layers

are initialized using a model pre-trained on imagenet [9].

The mini-batch size of 16 is employed for SP-RCNN. The

learning rate is initially set to 0.0005 and then reduced by

a factor of 10 after every 40k mini-batches. Training is ter-

minated after a maximum of 120k iterations. We also use

a momentum of 0.9 and a weight decay of 0.0005. To de-

tect the key points, we use the Mask-RCNN with backbone

X-101-64x4d-FPN [16] as our key point detector. Our sys-

tem is implemented in Caffe [19] and its source code will

be made publicly available.

4. Experiments and Analysis

In this section, we will experimentally validate our pro-

posed method. Firstly, we conduct ablation experiments to

verify the effectiveness of the semantic part information in

pedestrian detection. Then we evaluate the proposed SP-

RCNN detector on the public pedestrian detection bench-

mark, e.g., Caltech dataset [10], with comparison against

state-of-the-art methods.
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Figure 4. 2-D concatenation of the entity and the part data.

When we extract semantic parts from the proposal images, we

crop, resize and pad semantic part images with the original can-

didate pedestrian (entity) image to form a large image.

4.1. Datasets and Evaluation Metrics

Training and Validation Datasets. To train and evaluate

our SP-RCNN detector, we use the well-known large-scale

pedestrian detection benchmark, the Caltech pedestrian de-

tection dataset [10], mainly used to conduct a comprehen-

sive analysis and ablation experiments. The entire dataset

is collected from a 640 × 480 video recorder on a moving

vehicle and divided into three subsets, including training,

validation and test subsets, of which have 43k, 1.0k and

4.0k images, respectively.

Evaluation Metrics. We use the log average miss rate

(MR) to summarize detector performance. MR is the aver-

age miss rate at nine false positive per images (FPPI) rates

evenly spaced in log-space in the range 10−2 to 100 [10]. In

the analysis section, the default (a.k.a. reasonable) setting

only considers pedestrians whose size in images are larger

than 50% pixels and at least 65% area of which is visible.

The positive detection must have at least 0.5 intersection

over union (IOU). In the heavily occluded performance test,

the pedestrians visible area is constrained to [20%, 65%].
Section 4.3 gives more details on evaluation settings.

4.2. Ablation Study

In order to verify our semantic part based RCNN, we

examine the impact of three main components: Part RoI

Pooling, Part Feature Extraction and Part Estimator.

A. Part RoI Pooling. In this subsection, we evaluate the

effect of our Part RoI Pooling layer. For each pedestrian

candidate proposal, its corresponding feature vector is the

concatenation of the entity and parts feature vectors. The

function of part RoI pooling layer is to crop data by part

proposals that are represented by a K by 4 × 7 = 28 ma-

trix, the position (a four-dimension vector ) of seven-part
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Table 2. Ablation experiments evaluated using the Caltech test

set. Each experiment reports the log average miss rate (MR) with

one improvement disabled at a time. From this data we can con-

clude that (1) our proposed part ROI pooling improves the classi-

fier in most cases; (2) Cropping on the RGB images keeps more

information and leads to best performance; (3) A well-trained key-

point detector works better than designing grids as fixed body part

positions.

Backbone Part Fused RoI Pooling MR

Res50 7 7 Res4 5 sum 18.60
Res50 3 7 Res4 5 sum 15.45
Res50 7 7 RGB 11.80
Res50 3 7 RGB 10.88
Res50 7 3 RGB 7.24
Res50 3 3 RGB 7.13

VGG16 7 3 RGB 7.39
VGG16 3 3 RGB 7.76
Res50 grid 7 RGB 11.29
Res50 grid 3 RGB 7.20

proposals from K pedestrian candidates. To verify the vital

role of our part RoI pooling layer, we replace it by normal

RoI pooling to observe the performance of our model in the

absence of this layer. In this case, the part information is not

used and the model acts as a generic binary object detection

model as in [40]. From the first block in Tab.2, the improve-

ment contributed by Part RoI Pooling layer is obvious. The

log average miss rate falls from 18.60% to 15.45% signifi-

cantly. If we crop the original RGB image directly to obtain

the parts, shown as the second block of the table, we can re-

duce ∼ 1% of MR. We also compare the benefit of part RoI

pooling when cropping RGB images in the sate-of-the-art

model, SDS-RCNN[3], in which authors infuse detection

with weak segmentation supervision. On the Res50 back-

bone, using part information can improve 0.1 point(from

7.24 to 7.13) in Caltech test set under default reasonable

settings. Interestingly, when we use a VGG16 backbone to

replace Res50, the part proposals decrease its performance

from 7.39 to 7.76 due to the low-resolution issue discussed

in Sec. 3.3.

B. Feature Extraction on Different Levels. In this sub-

section, we compare the performance of our model applying

part RoI pooling on the summation layer of Res50 in the last

residual block (Res4 5 sum) or raw RGB images. Experi-

ments substantiate that it is better to set part RoI pooling at

the beginning, which means we extract and concatenate the

raw RGB images. To get a feature map, we need to resize

the candidate pedestrian images to 224× 224 or 448× 448
to fit the input size for VGG16 or Res50 backbones, respec-

tively. Then the resized image passes through 5 to 6 2-by-2

max pooling layers and get a 7-by-7 feature map. Extracting

the part features from such a low-resolution feature map is

intractable. Observed from the 2nd and 4th rows in Tab. 2,
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Figure 5. The miss rate - FPPI curve on Caltech Pedestrian test

set under default evaluations (legends indicate MR). Our SP-

RCNN reaches the lowest MR among all the methods. (Lower is

better)

changing part RoI pooling from Res4 5 sum to raw RGB

data can bring us at least 4.6 percent decrease on the av-

erage log missing rate. Without semantic part information

(row 1 and row 3), aforementioned conclusion still stands,

which is consistent with many works[45, 3].

C. Part Estimator. In this subsection, we evaluate the

effect of Mask-RCNN key point detector with other meth-

ods. Mask-RCNN predicts 17 key-points from each pedes-

trian candidate. In fact, any off-the-shelf human pose esti-

mation detector can be used such that our model owns great

flexibility. To explore the importance of our pose estimator,

we design a grid method to manually assign part bounding

boxes. Similar to the part branch in PCN[43], grid method

divides the entity proposals equally into 3× 2 blocks. Then

we pad the 6 blocks on the pedestrian candidate to train/test

the classifier. The last blocks in Tab. 2 show that the hand-

crafted parts also work well. Grid method can increase the

performance from 11.80% MR to 11.29% MR. Fused with

weak segmentation, grid part reaches 7.20% MR. However,

to reach our best MR (7.13%), using a well-trained key-

point detector, such as Mask-RCNN, is still preferred.

4.3. Comparison with State-of-the-art Methods

We compare our results in Caltech dataset with two tra-

ditional methods [42, 8] and seven deep learning based ap-

proaches [39, 29, 4, 40, 43, 11, 3] in Tab. 3, Fig. 5 and Tab. 3

and Fig. 6.

Among those approaches, our SP-RCNN obtains a log

average miss rate of 7.13% on the default setting, which

beats our baseline method SDS-RCNN[3]. We achieve zero
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Table 3. Detailed breakdown performance comparisons of our models and other state-of-the-art models on several evaluation

settings. Underlined rates are the second best records (Lower is better). Our method is based on RPN+BF[40] and SDS-RCNN[3].

However, this semantic part information can also be used in other most recent works [46, 48, 25, 35] with improvement on find heavily

occluded pedestrians and small pedestrians.

Methods Default All Scl.large Scl.near Occ.heavy

VJ[42] Paul et al. (2001) 94.7 99.5 86.2 89.9 98.8

HOG[8] Navneet et al. (2005) 68.4 90.4 37.9 44.0 96.0

DeepParts[39] Yonglong et al. (2015) 11.8 64.8 4.37 4.78 60.4

RPN+BF[40] Cosmin et al. (2015) 9.57 64.7 1.18 2.26 74.4

MS-CNN[4] Zhaowei et al. (2016) 9.95 61.0 1.99 2.60 59.9

UDN+[29] Wanli et al. (2017) 11.5 64.8 1.05 2.08 70.3

F-DNN+SS[11] Xianzhi et al. (2017) 8.17 50.3 1.70 2.82 53.8

SDS-RCNN[3] Garrick et al. (2017) 7.36 61.5 0.97 2.15 58.5

PCN[43] Shiguang et al. (2018) 8.45 61.9 0.00 1.51 55.8

FRCNN+ATT-vbb[46] Shanshan et al. (2018) 10.33 - - - 45.2

PDOE+RPN[48] Chunluan et al. (2018) 7.60 - - - 44.4

GDFL[25] Chunze et al. (2018) 7.85 - - - 43.2

TLL-TFA [35] Tao et al. (2018) 7.40 37.6 0.72 - -

SP-RCNN (ours) 7.13 60.4 0.00 1.11 53.3
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Figure 6. The miss rate - FPPI curve on Caltech Pedestrian test set under near and heavily occluded evaluations. Legends indicate

MR(log average miss rate).Left: Near scale setting where we only consider the size of pedestrians larger than 80 pixels. Right: Heavily

occluded setting with human occluded area from 20% to 65%. We keep miss rate and FPPI in the same range to show there is huge

difference on the difficulty of solving these two problems. Our method denoted in blue dot curves gives less MR in both cases.

MR when people is higher than 100 pixels. That is because

our method is based on human key-point estimation. It acts

better when the pedestrian is close to the camera. If we

consider pedestrians taller than 80 pixels, shown in Scl.near

column in Fig. 6, SP-RCNN further increases 0.4 points

(from 1.5% to 1.1%) than the closest PCN[43] method that

uses both part and context information. In the occlusion

test, our SP-RCNN still has a good record when the pedes-

trian is half-visible or heavily occluded, with different com-

petitors SDS-RCNN[11] and F-DNN+SS[11].

Fig. 6 also plots the miss rate - FPPI curve on Caltech

Pedestrian test set under near and heavily occluded evalu-

ations. Our method denoted in blue dot curves gives less

log average miss rate in both cases. We keep the range of

miss rate and FPPI in the same scale to show there is a huge

difference on the difficulty in the two problems. Comparing

both plots in Fig. 6, the miss rate - FPPI curve in heavily

occluded setting is still in the upper area with high MR,

indicating that more research works are required to handle

with the heavily occluded pedestrian detection problem.

We also list four most recent works [46, 48, 25, 35] in

Tab. 3. [46, 48, 25] get high improvement on finding heav-
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Figure 7. Comparison of pedestrian detection results with other methods. The first column shows the input images with ground-truths

annotated with red rectangles. The next four columns show the detection results in green bounding boxes of PCN [43], F-DNN+SS [11],

SDS-RCNN [3] and our SP-RCNN, respectively. The red number on the top of each detection bounding box is the confident score for each

method (Please zoom in to see the red confidence scores). The four rows give pedestrian examples in four cases: regular, small, near-scale

and heavily occluded. In each row, we only plot the detection with higher confidence than a certain threshold for better comparison. Our

SP-RCNN results (last column) are comparatively more accurate in all cases.

ily occluded pedestrians and [35] gets very low MR in all

setup by finding many small-scale pedestrians. This pa-

per mainly shows the performance of our method based on

RPN+BF[40] and SDS-RCNN[3], while it is promising to

achieve much better performance if applied on later better

baselines. Flexibility of our method cannot be ignored and

denied in this aspect, for example, applying our semantic

part information in those most recent works.

4.4. Qualitative Results

We visualize some of the detection results in Fig. 7 from

the four state-of-the-art methods[40, 43, 11, 3]. As shown in

the first and last images of the second row, the manually grid

part method [43] cannot detect heavily occluded pedestri-

ans. It is meaningful to find that our method is better than F-

DNN+SS[11] shown in the third column at detecting heavy

occluded pedestrian (one person standing behind a tree in

the first row), given that this method is addressing occlusion

problem specifically. Comparing the fourth column [3] with

our method in the fifth column, SDS-RCNN[3] classifies a

traffic light pole as a pedestrian with very high confidence

(0.92, please zoom in Fig. 7 to see confidence scores over

every green bounding box) while our method can avoid this

false alarms by using semantic part information.

5. Conclusion

In this paper, we propose the semantic part based region

convolutional neural networks (SP-RCNN) to deal with the

deformation and occlusion problems in pedestrian detec-

tion. In SP-RCNN, we use the human pose estimation

detector to locate key points of each pedestrian candidate.

Then we extract semantic parts and pad them with the orig-

inal proposal images. The padded images are resized and

passed through the RCNN for both classification and local-

ization tasks. Extensive experiments on the Caltech dataset

demonstrate that adding semantic part information is of

great importance and use to achieve superior performance,

especially on close and heavy occluded pedestrians.
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